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ABSTRACT
Purpose Clinical Trial Simulations (CTS) are a valuable tool
for decision-making during drug development. However, to
obtain realistic simulation scenarios, the patients included in
the CTS must be representative of the target population. This
is particularly important when covariate effects exist that may
affect the outcome of a trial. The objective of our investigation
was to evaluate and compare CTS results using re-sampling
from a population pool and multivariate distributions to sim-
ulate patient covariates.
Methods COPD was selected as paradigm disease for the
purposes of our analysis, FEV1 was used as response measure
and the effects of a hypothetical intervention were evaluated
in different populations in order to assess the predictive per-
formance of the two methods.
Results Our results show that the multivariate distribution
method produces realistic covariate correlations, comparable
to the real population. Moreover, it allows simulation of pa-
tient characteristics beyond the limits of inclusion and exclu-
sion criteria in historical protocols.

Conclusion Both methods, discrete resampling and multivar-
iate distribution generate realistic pools of virtual patients.
However the use of a multivariate distribution enable more
flexible simulation scenarios since it is not necessarily bound to
the existing covariate combinations in the available clinical
data sets.

KEY WORDS clinical trial simulations . covariate effect .
demographics . drug development . inclusion and exclusion
criteria . multivariate distribution . re-sampling

ABBREVIATIONS
COPD Chronic obstructive pulmonary disease
CTS Clinical trial simulation
Dis Disease status
EDK50 Apparent potency
Emax Maximum effect
FEV1 Forced expiratory volume in 1 second
Int_Dis Disease status at the start of the clinical trial
Kin Zero-order synthesis rate constant
Kout First order elimination process
KPD Kinetic-pharmacodynamic
MVND Multivariate normal distribution
PKPD Pharmacokinetic-pharmacodynamic
Slope_Dis Daily decline in disease status

INTRODUCTION

Whilst simulations have existed for many years as a statistical
technique, their use as tool to evaluate treatment response in
clinical trials has become possible thanks to the integration of
disease progression and pharmacokinetic-pharmacodynamic
(PKPD) models. From a drug development perspective, clin-
ical trial simulation (CTS) became a useful tool to support
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decision making and reduce clinical trial failure (1–3). Among
the numerous possible applications, CTS has been used to
characterise the behaviour of a biological systems, explore
drug properties as well as understand response in different
populations. It can also be used to rank or prioritise options
for a drug development program, thereby providing an inte-
grated overview of potential designs and outcomes to relevant
stakeholders (e.g., clinical experts, regulatory authorities).
Moreover, it offers the opportunity to test different
“what if” scenarios from first-time-in-human studies
throughout post-marketing studies in phase IV (4).

The technical definition of CTS includes the generation of
a response for a virtual subject by reproducing the trial design,
the disease progression, the drug and the patient’s behaviour
using mathematical models and numerical methods (5, 6)
(Fig. 1). Even thoughmuch attention has been given to disease
and drug models, limited efforts have beenmade to ensure the
accurate evaluation of trial design factors, patient behaviour
and individual characteristics in clinical trial simulations. The
trial execution model represents the design variables of inter-
est in a simulation exercise (e.g. dosing regimens, selection
criteria, stratification rules, study duration); the patient’s be-
haviour comprises those factors that determine the trial exe-
cution features, such as adherence and missing records. Indi-
vidual characteristics include demographic, clinical and phys-
iological measures that altogether describe individual patients
in the target population.

Since the objective of a CTS exercise is to evaluate how
multiple interacting factors in a specific scenario affect the
outcome of the study, it is essential to properly simulate pa-
tient populations which reflect individual characteristics in a
realistic manner, including an evaluation of the impact of
individuals who do not meet inclusion/exclusion criteria, as
defined for evidence arising from controlled clinical trials.
Thus far, in most cases, published literature regarding the
use of simulations in clinical pharmacology has been limited
to the evaluation of the effect of changes in some specific
design factors, such as the study duration, dose or sampling
frequency (8–11). By contrast, there is very little work done on
the impact of design factors related to patient selection and
protocol stratification. Yet, these publications often do not
consider the implication of such factors on trial outcome. This
is particularly important if one wants to understand the role of
physiological or demographic factors as covariates on re-
sponse parameters and assess the possibility for personalised
therapy or dose adjustment (12).

In this context, covariate distribution models play an essen-
tial role. They describe patient-specific aspects defining e.g.,
patient demographic information, baseline disease character-
istics, co-morbidity and concomitant medication (13). For
each patient, these details may be considered as a vector con-
taining the patient information (e.g., male, 70 kg, smoker,
severe disease status, etc.). This information vector is usually

associated with the differences between patients in terms of
pharmacokinetics and pharmacodynamics, and it is often used
to explain the variability on individual parameter values. Con-
sequently, the simulation of covariates for a virtual patient
population assumes great importance as the individual vectors
of the covariates for each patient will determine the outcome
of the simulated study.

Statistically, the approaches used to simulate virtual popu-
lations may be divided in nonparametric and parametric sim-
ulations. Nonparametric bootstrapping or re-sampling is one
of the most straightforward methods for constructing a popu-
lation of virtual patients, often used to determine the uncer-
tainty on estimated or predicted quantities (14, 15). Using this
approach, a pool of patients can be created by randomly
selecting patient vectors for inclusion into the virtual pool of
patients. This first random selection of individuals can then be
refined by applying inclusion–exclusion criteria in order to
obtain the desired population. In general, numerous covariates
are correlated, and as such these correlations need to be main-
tained during the creation of virtual patients. For instance, in
paediatric patients, age and weight are generally related and
any re-sampling technique will need to account for that corre-
lation (16). In this sense, re-sampling methods provide an op-
portunity to create patients with a realistic combination of
covariates. Nevertheless, the technique suffers an important
limitation, i.e., the constraint of the observed covariate matrix
in the real data (empirical distribution). Consequently, one
should be aware of the fact that the simulated population will
not include patients with any other combination of covariates
other than the one observed in the source data.

Parametric methods, on the other hand, may be used as
alternative to re-sampling in order to generate new combina-
tions of vectors or matrices from an existing distribution. The
two main methods for generating covariate vectors with this
approach are represented by a series of univariate distributions
or by using a unique multivariate distribution for the whole
population. The advantage of this latter technique consists in
accounting for the correlation between covariates in the sim-
ulation process, which allows for the simulation of more real-
istic covariate vectors. Whilst it can be anticipated that a
mechanistic or physiologically-based model may be required
with increasing number of interacting factors (17, 18), in many
cases, these interactions may be defined using existing knowl-
edge or may be extrapolated from an existing population.

Independently from which choices are made, the method
for obtaining simulated data sets should be carefully consid-
ered and its performances verified afterwards (19). The simu-
lated data sets should resemble reality if the results are meant
to reflect real-life conditions. The correlation between covar-
iates can be estimated from real data to ensure that the simu-
lated data closely reflect the underlying pool of patients. Sub-
sequently, the distribution of the simulated data should be
verified to confirm they resemble what is being simulated.
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This can be done, for example by using summary measures
for the covariate distributions, Kaplan–Meier survival curves
for survival data or by fitting appropriate regression models.

The objective of this exercise was therefore to compare the
use of discrete re-sampling and multivariate normal distribu-
tion (MVND) methodologies in the creation of virtual patient
populations showing plausible, realistic vector of clinical and
demographic characteristics. The MVND methodology de-
veloped by Tannenbaum and collaborators (20), which is usu-
ally applied to the simulation of continuous variable, was
adapted to allow the simulation of categorical data. The ap-
proach consists in treating all categorical covariates as if they
have continuous values; new covariate values are sampled
from a distribution built using the real data and the simulated
data are then converted back again into categorical ones.
Chronic obstructive pulmonary disease (COPD) was selected
as a case study for the comparison of the twomethodologies. A
previous investigation performed by our group on the progres-
sion of COPD has shown that symptoms and severity in this
population are closely related to a combination of multiple
covariates, continuous as well as categorical ones, including
demographics and disease-specific characteristics (21, 22).More-
over, considering the large number of COPD trials failed in the
past few years, we anticipate that covariate effect profiling will be
critical for the design and evaluation of efficacy trials in this field.

METHODS

As the objective of this exercise was to compare the use of
discrete re-sampling and multivariate normal distribution
(MVND) methodologies in the creation of virtual patient pop-
ulations, attention was paid to their performance in generating
a plausible, realistic vector of clinical and demographic charac-
teristics. Continuous and categorical covariates were simulated
using a real set of COPD patients from the Dutch TI Pharma
database. Patient demographics and data set details are reported

in Table I. The data set used in the simulation consisted of 3498
patients (32% women), and the covariates included in the
analysis were COPD severity, smoking status, gender, weight,
height and age. The covariate simulation was performed with R
2.12.0 (23). This patient population was used as empirical
distribution for the subsequent steps in our analysis.

CTS with Re-Sampling and MVND Patient Generation

Discrete re-sampling was performed using the R package
MStoolkit (Mango Solutions, UK). The data set used in the
simulations contains only one line per subject, i.e., where ap-
plicable multiple time measures were removed and each pa-
tient was randomly sampled as a vector of covariates. Each
patient could be sampled multiple times in order to obtain
pools of patients greater than the original data set, and to

Fig. 1 Components and factors to be considered in a clinical trial simulation (adapted fromGobburu and Lesko) (7). Little focus has been given to the trial model.
Given that the objective of a CTS exercise is to evaluate how multiple interacting factors in a specific scenario affect the outcome of the study, it is essential to
properly simulate patient populations which reflect individual characteristics in a realistic manner, including an evaluation of the impact of individuals who do not
meet inclusion/exclusion criteria.

Table I Summary of the COPD Patient Demographics (n=3498)
Extracted from the TIPharma Database for the Purposes of the
Current Analysis

Categorical variables Number of subjects %

Gender (males) 476 68

Smoking status

Smoker 123 32

Ex-smoker 006 57

Non smoker 369 11

Severity

Mild / moderate 180 34

Severe/very severe 318 66

Continuous variables Median (range)

Age (yr) 65 (40, 90) –

Weight (kg) 75 (35, 183) –

Height (cm) 170 (135, 208) –

Baseline FEV1 (L) 1.14 (0.33, 3.18)
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introduce variability when an equal number of patients was
simulated.

In order to generate continuous and categorical covariates
in parallel, a set of pre-defined data manipulation steps is
required before the simulations are performed. The MVND
methodology was based on the approach described by
Tannenbaum et al. (20). Briefly, with this technique the con-
tinuous and categorical covariates are treated as continuous
variables. All the covariates are log-transformed and normal
distribution is then assumed during the simulation. Subse-
quently, the simulated values are converted back into the nor-
mal space. The simulated values describing categorical covar-
iates are linked to pre-defined thresholds within the simulated
distribution; these thresholds are calculated from the inverse
cumulative distribution function of the empirical distribution.

The MVND covariate simulations were performed
according to a user-defined function in R (see
Electronic supplementary material). This function takes
into account the distribution of covariates in the em-
pirical distribution with a tolerance level of 5% for
categorical covariates, whereas continuous covariates
are retained for values within the range of the real
data. These procedures can be adjusted to different
acceptance criteria and correspond to simulating from
truncated distributions when compared to the empiri-
cal (real) covariate distributions. All simulations were
based on study design scenarios with group sizes of
100, 1000 and 3500 patients. Since the MVND meth-
od consists in the generation of new subjects, these
simulated covariates were also compared with the real
data. In this evaluation, each simulation was performed
in duplicate in order to evaluate the reproducibility of
the method.

Drug-Disease Model for Trough FEV1

In order to evaluate the performance of re-sampling and
MVNDmethodologies in the context of CTS, covariates were
simulated in conjunction with a KPD model describing the
treatment effects of a bronchodilator on forced expiratory
volume 1 sec (FEV1). The analysis was performed using
NONMEM 7.1.2 (24, 25).

The changes in FEV1 over time were described by an in-
direct response model, as expressed by the following differen-
tial equation:

d FEV 1

dt
¼ Kin−Kout � FEV 1 ð1Þ

where the change in the observed FEV1 over time (dFEV1/dt)
is controlled by a zero-order process parameterised as a syn-
thesis rate constant (Kin) and first order elimination process
(Kout). The disease status at baseline (steady state conditions)

was defined by the ratio between Kin and Kout. The disease
progression was modelled as a linear decline in the disease
status as follows:

Dis ¼ Int Dis−Slope Dis� Time ð2Þ
With

Dis ¼ Kin
Kout

ð3Þ

where Dis is the disease status, Int_Dis is the disease status at
the start of the clinical trial, and Slope_Dis is the daily decline
in Dis due to the disease progression.

As described by Eq. (2), the disease status (Dis) reflects not
only the natural disease progression over time, but also time-
dependent processes (Eq. 3) associated with the changes in
airway function, as determined by spirometry (FEV1). Both
processes were found to be affected by an individual patient’s
clinical and demographic characteristics.

The KPDmodel consisted of a nonlinear Emax function in
which the maximum effect is proportional to the apparent
potency parameter (EDK50). Further details on the
parameterisation and model validation can be found else-
where (24). Dropout was not included in this simulation exer-
cise to avoid confounding effects. Each trial was simulated 100
times with a different set of patients.

In spite of the availability of FEV1 response data in the
original trial population, we have decided to use a set of
simulated responses from the model as reference for the
evaluation of the performance of the re-sampling and
MVND methods. This choice was made to ensure accurate
comparison of results and avoid interference of study-spe-
cific aspects (e.g. dropout rate) or model-related issues (e.g.
the difference between predicted and observed response)
when comparing the different scenarios. The response data
from the model are referred in the article as “real data”
since they are generated with real covariates. Drug and
placebo effect were simulated using the same KPD model
as for the reference population. In this case, 100 different
data sets were simulated, mimicking the situation observed
in 100 different clinical studies with the same inclusion–
exclusion criteria, as observed for the empirical distribution.
The simulations were performed with a series of ad hoc R
functions (26) aimed at automating run execution and
obtaining basic statistical summaries. The simulations for
treatment and placebo arms were performed independently
in different data sets to avoid the interference may arise
from patient assignment to the different arms.

MVND to Simulate New Patient Populations

To illustrate the implications of covariate correlations on trial
outcome, additional simulation scenarios were considered in
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which a new patient cohort was created by screening a posteriori
subsets of patients simulated according to the steps described
above. Using the same ad hoc functions 3500 patients were
selected to generate different stratification levels for disease
severity, as compared to the empirical distribution (i.e., from
1:2 to 2:1 for mild and moderate severity).

RESULTS

To assess the performance of the two methods for the simula-
tion of covariates, the first step consisted in verifying the im-
pact of different sample sizes on the covariate distributions
and their correlations. Figure 2 depicts the covariate correla-
tions for the real pool of patients and for the different popu-
lations simulated with 100, 1000 and 3500 patients.

An initial evaluation of the performance of the MVND
method consisted in comparing qualitatively and quantitative-
ly the correlation and proportion profiles of real and virtual
patients. In all the simulations scenarios, the correlation be-
tween covariates was found to be maintained, for both con-
tinuous and categorical covariates. This is warranted also for
small sample sizes, although slight deviations were observed
for simulations with very low numbers of patients.

As shown in Fig. 3 for age and smoking status, a similar
pattern is observed for the distribution of the simulated con-
tinuous covariates and the proportions for the categorical ones
irrespective of sample sizes. Additional details can be found for
other continuous and categorical covariates in the Electronic
supplementary material (Figure S1 and S2). As depicted in
Figs. 3, S1 and S2, the simulated covariates present a median
and interquartile range which reflect the covariate distribution
in the real population. On the other hand, in some cases the
high variability in the original data set has yielded outlier
values, which are not captured by the simulations. The con-
cordance between real and simulated data is particularly im-
portant to ensure that the simulated data reflect the range of
values observed in real life. The proportion of the categorical
covariates also reflects the structure of the original pool of
patients, showing that this technique can be used to reproduce
the patient stratification used in the real trial.

CTS with Re-Sampling and MVND Patient Generation

Figure 4 shows the results for FEV1 at the end of the trial
based on the re-sampling (bootstrapping) and MVND
methods. The former reflects the impact of covariate correla-
tions in the original population whereas the latter relies on the
estimated multivariate distribution. No formal statistical hy-
pothesis test is required to conclude that different results are
predicted for trough FEV1 values, depending on the method
used and characteristics of the simulated population. The
magnitude of such differences may vary with the sample size.

As expected the simulated FEV1 vs. time profiles were similar
to the original trial when considering comparable or ex-
changeable patient populations (i.e., bootstrapping). The sim-
ilarities in the results hold also after varying sample size. By
contrast, multivariatemethods also generate realistic covariate
distributions, but provide insight into the impact of the inter-
action between covariates (i.e., covariate correlations) in the
overall population. These differences unravel variation which
is often assigned tomere randomness when comparing clinical
trial results in the presence of covariate effects.

Given the presence of time-dependent covariate effects, a
comprehensive summary of the two methods is provided in
Figs. 5, 6 and 3S, in which FEV1 changes in 100 clinical trials
are depicted over the period of 1 year. It should be underlined
that despite good prediction of the mean profiles for FEV1,
the variability of the simulated data was significantly higher
than the real for scenarios based on smaller sample sizes
(Figs. 5 and 3S). By contrast, this issue was not evident when
results from scenarios with similar sample sizes are compared
with each other (Fig. 6).

Overall, it appears that the trials simulated with the multi-
variate distribution present slightly smaller variability as com-
pared with those obtained by discrete re-sampling.

MVND to Simulate New Patient Populations

The main advantage of MVNDmethod compared to discrete
re-sampling is the possibility to create a new pool of patients
across a different range of values or stratification levels, whilst
ensuring the correlation structure and/or colinearity are main-
tained.. An example of this feature is presented in Figure 4S
(Electronic supplementary material), which shows a new study
population stratified by disease severity using a different pro-
portion of patients, as compared to the original patient pool.
The FEV1 vs. time profile is similar to the original study, but
the FEV1 at baseline is higher for the simulated population.

DISCUSSION

CTS is a powerful resource for the prediction of the outcome
of hypothetical clinical trials. However to be effective as a
design tool, it is essential to ensure that the patient populations
used in the simulation process reflect real patients and that
covariate correlations are well described. Particularly impor-
tant is the covariate distribution defining the correlation be-
tween patient demographic and disease characteristics, given
that they are often related to the study outcome (12, 27). Such
correlations have so far been overlooked in previous investi-
gations in which covariate effects are treated as structural pa-
rameters in pharmacokinetic or pharmacokinetic-
pharmacodynamic models. The need for identifying covariate
correlations and incorporating them into a matrix for the
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simulation of virtual patients is disregarded in most publica-
tions (18). Our investigation has shown the practical implica-
tions of discrete re-sampling and MVND for the creation of a
virtual patient population.

The concept of re-sampling data – more commonly re-
ferred to as bootstrapping – has been in use for more than
four decades. Bootstrapping has been shown to have consid-
erable theoretical advantages when it is applied to non-
Gaussian data (28). However, its application in CTS presents

an important limitation, which is crucial for prospective eval-
uation of drug response in drug development, which often
involves changes in protocol design, doses and most impor-
tantly different inclusion and exclusion criteria, making the
patient population in a trial not necessarily exchangeable with
the subsequent one, as for instance during Phase II and Phase
III studies (29, 30). By contrast, the MVND technique allows
simulation of new vectors of covariates, which can differ from
the ones present in the initial pool of subjects. A limitation of

Fig. 2 Scatter plot matrix showing the covariate correlation for the real study in which a total of 3498 patients were included (left upper corner) and for different
simulated patient populations. The simulations included cohorts with 3500 (right upper corner), 1000 (left lower corner) and 100 (right lower corner). The covariates
presented in the matrix are respectively: smoking status (smoke), gender (sex), disease severity (sev), weight (wt), height (ht) and age (age).
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this methodology has been however its use for continu-
ous variables only. We have implemented the procedure
described by Tannenbaum et al. (20) into an R function
which allows the application of such method for the
simulation of continuous as well as categorical covariates
(31).

Advantages and Limitations

Historically in pharmacometric research, bootstrapping and
other re-sampling techniques have been applied as a statistical
tool for model diagnostics and more specifically parameter
estimation, i.e., to assess its accuracy and bias. Some of the
elementary uses of bootstrapping include the calculation
of confidence intervals, hypothesis testing, linear regres-
sion, and correlations when exploring the association
between variables (32). The technique may also be use-
ful for analysing smallish expensive-to-collect data sets,
where prior information is sparse, distributional assump-
tions are unclear, and where further data may be diffi-
cult to acquire (33). These applications do not address

the requirements for characterising the impact of covar-
iate effects on a prospective, potentially different popu-
lation. The increasing focus on personalised medicines
and the use of adaptive protocol designs in clinical re-
search impose the need for trial models in which patient
population characteristics are clearly reflected in a sim-
ulation scenario, especially when making predictions
from one group to another (34). From a statistical point
of view, such differences in experimental conditions and
varying population characteristics can limit the predic-
tive performance of the models used in clinical trial
simulations.

In fact, the possibility to evaluate the impact of greater
heterogeneity and variability in the study population, as com-
pared to randomised controlled trials, is critical for the use of
clinical trial simulations as a quantitative tool for regulatory
and clinical decision making. The ability to make inferences
and draw conclusions about treatment response in a larger
population involves assumptions about the representativeness
of the cohort for the ‘target’ population (35, 36). In conjunc-
tion with the appropriate model parameterisation, it may also

Fig. 3 Distributions of age (top
panel) and proportions of smoking
status (lower panel) for real and
simulated data. Simulated
populations comprised different
number of patients: 100, 1000 and
3500; each simulation was
performed in duplicate.
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provide the basis for identifying the physiological and clinical
mechanisms underlying statistical correlations (37). It should
be noted, however, that when using MVND all the covariates
are assumed to follow the same distribution, in this particular
case, the log-normal distribution. A potential limitation of this
assumption is that the multivariate distribution is based on
only one vector of covariates per subject, which restricts the
simulations to time invariant covariates or baseline values.

COPD as a Paradigm Population

The assessment of response to an intervention should be based
on sensitive clinical measures or endpoints that reflect differ-
ences in disease severity and/or patient population character-
istics. This has been previously illustrated for HIV infection,
where CD4 counts and mRNA viral load are correlated with
clinical status, antiviral treatment effect, and risk of AIDS (38).

Despite ongoing efforts on the evaluation of novel treatments
for COPD, little has been made to characterise how differ-
ences in patient characteristics, i.e., inclusion and exclusionFig. 4 Trough FEV1 value reached at the end of the trial for the placebo arm.

Scenarios with different number of patients were evaluated: 100 (lower panel),
1000 (middle panel) and 3500 (upper panel). The differences in the predicted
response obtained by multivariate distribution reveals the role of underlying
covariate correlations, which are not considered when re-sampling tech-
niques by bootstrapping are used. Sample size has a clear effect on the
distribution of the predicted results, irrespective of the simulation method.

Fig. 5 Simulation of 100 clinical trials using the multivariate distribution or re-
sampling method (each trial has 100 COPD patients per arm). The results are
compared with the findings obtained with the same model for the real pop-
ulation of 3498 patients. The blue dots represent the medians of the 100 trials,
while the green line represents the median of the medians.

Fig. 6 Simulation of 100 clinical trials using the multivariate distribution or re-
sampling method (each trial has 3500 COPD patients per arm). The results
are compared with the findings obtained with the same model for the real
population of 3498 patients. The blue dots represent the medians of the 100
trials, while the green line represents the median of the medians.
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criteria, correlate with the clinical status and overall treatment
response (21, 22).

Our investigation shows that covariate correlations, as de-
fined by the underlying correlation structure, can have clear
implications for the outcome of a trial (24, 39). In addition, we
have found that for small sample sizes, simulated FEV1 pro-
files show larger variability as compared to the real data. This
is a natural consequence of the smaller sample size of the
simulated scenarios (with MVND and re-sampling). On the
other hand, when the sample size is comparable to the sample
size of the empirical distribution, the FEV1 profiles mimic
those of the real population. Another point worth mentioning
is that trials simulated with the MVND method show lower
variability as compared to those using re-sampling. This may
be due to the inclusion of distribution boundaries in the sim-
ulation step with the MVND (40). In fact, to avoid unrealistic
covariates values, continuous covariate values were retained if
within the range of real data. Likewise, for categorical covar-
iates a 5% tolerance was applied as acceptance criterion for
differences in the covariate distribution in the simulated and
real data sets. In addition, one should bear in mind that the
values simulated by re-sampling are driven by the available
data, which leads to empirical distributions that are closer or
similar to the source data. By contrast, the data simulated with
the MVND include a well-defined variance-covariance struc-
ture under the assumption that all covariates are log-normally
distributed and this distribution propagates across all sub-
groups (e.g. male and female).

Perspectives

In summary, CTS needs to account for the main sources of
variability affecting the variables of interest during an actual
trial. In contrast to traditional re-sampling techniques, the
MVND method allows simulation of new patient pools in
which patient distributions are generated from a pre-defined
covariate correlation model, irrespective of inclusion and ex-
clusion criteria. Moreover, since new covariate vectors can be
generated, it is possible to evaluate patient distributions which
may not have been tested experimentally. In spite of current
views on the role of genotypical and phenotypical markers as
the basis for stratification in clinical trials (41, 42), our findings
suggest that stratification procedures are also necessary in clin-
ical trial simulations whenever moderate and strong covariate
effects have been shown to affect pharmacokinetics and
pharmacodynamics.
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